Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Sci Rep ; 14(1): 2161, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272942

RESUMEN

Enterovirus D68 (EV-D68) is an emerging pathogen that has caused outbreaks of severe respiratory disease worldwide, especially in children. We aim to investigate the prevalence and genetic characteristics of EV-D68 in children from Shanghai. Nasopharyngeal swab or bronchoalveolar lavage fluid samples collected from children hospitalized with community-acquired pneumonia were screened for EV-D68. Nine of 3997 samples were EV-D68-positive. Seven of nine positive samples were sequenced and submitted to GenBank. Based on partial polyprotein gene (3D) or complete sequence analysis, we found the seven strains belong to different clades and subclades, including three D1 (detected in 2013 and 2014), one D2 (2013), one D3 (2019), and two B3 (2014 and 2018). Overall, we show different clades and subclades of EV-D68 spread with low positive rates (0.2%) among children in Shanghai between 2013 and 2020. Amino acid mutations were found in the epitopes of the VP1 BC and DE loops and C-terminus; similarity analysis provided evidence for recombination as an important mechanism of genomic diversification. Both single nucleotide mutations and recombination play a role in evolution of EV-D68. Genetic instability within these clinical strains may indicate large outbreaks could occur following cumulative mutations.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Infecciones del Sistema Respiratorio , Niño , Humanos , Epidemiología Molecular , Enterovirus Humano D/genética , Infecciones del Sistema Respiratorio/epidemiología , Infecciones por Enterovirus/epidemiología , Filogenia , China/epidemiología , Brotes de Enfermedades , Enterovirus/genética
2.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289118

RESUMEN

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Asunto(s)
Endopeptidasas , Enterovirus Humano D , Interacciones Microbiota-Huesped , Virus Oncolíticos , Piroptosis , SARS-CoV-2 , Humanos , Línea Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Enterovirus Humano D/enzimología , Enterovirus Humano D/genética , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/virología , Gasderminas/antagonistas & inhibidores , Gasderminas/genética , Gasderminas/metabolismo , Viroterapia Oncolítica , Virus Oncolíticos/enzimología , Virus Oncolíticos/genética , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
J Microbiol Immunol Infect ; 57(2): 238-245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38233293

RESUMEN

BACKGROUND: Enterovirus D68 (EV-D68) is an important reemerging pathogen that causes severe acute respiratory infection and acute flaccid paralysis, mainly in children. Since 2014, EV-D68 outbreaks have been reported in the United States, Europe, and east Asia; however, no outbreaks have been reported in southeast Asian countries, including Myanmar, during the previous 10 years. METHODS: EV-D68 was detected in nasopharyngeal swabs from children with acute lower respiratory infections in Myanmar. The samples were previously collected from children aged 1 month to 12 years who had been admitted to the Yankin Children Hospital in Yangon, Myanmar, between May 2017 and January 2019. EV-D68 was detected with a newly developed EV-D68-specific real-time PCR assay. The clade was identified by using a phylogenetic tree created with the Bayesian Markov chain Monte Carlo method. RESULTS: During the study period, nasopharyngeal samples were collected from 570 patients. EV-D68 was detected in 42 samples (7.4 %)-11 samples from 2017 to 31 samples from 2018. The phylogenetic tree revealed that all strains belonged to clade B3, which has been the dominant clade worldwide since 2014. We estimate that ancestors of currently circulating genotypes emerged during the period 1980-2004. CONCLUSIONS: To our knowledge, this is the first report of EV-D68 detection in children with acute lower respiratory infections in Yangon, Myanmar, in 2017-2018. Detection and detailed virologic analyses of EV-D68 in southeast Asia is an important aspect of worldwide surveillance and will likely be useful in better understanding the worldwide epidemiologic profile of EV-D68 infection.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Neumonía , Infecciones del Sistema Respiratorio , Niño , Humanos , Estados Unidos , Enterovirus Humano D/genética , Mianmar/epidemiología , Filogenia , Teorema de Bayes , Neumonía/epidemiología , Brotes de Enfermedades , Enterovirus/genética
4.
Virus Res ; 339: 199284, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38040125

RESUMEN

Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enfermedades Neuromusculares , Niño , Humanos , Enterovirus Humano D/genética , Interferón lambda , Sistema Respiratorio
5.
J Virol ; 97(12): e0160023, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38047678

RESUMEN

IMPORTANCE: Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 ßB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Proteínas de la Cápside , Enterovirus Humano D , Infecciones por Enterovirus , Humanos , Cápside , Proteínas de la Cápside/química , Enterovirus Humano D/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología
6.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110940

RESUMEN

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Asunto(s)
Enterovirus Humano A , Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Reishi , Niño , Animales , Humanos , Ratones , Enterovirus Humano D/genética , Enterovirus Humano A/genética , Vacunas Combinadas , Antígenos Virales , Inmunoglobulina A , Inmunoglobulina G
7.
J Clin Virol ; 169: 105618, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977074

RESUMEN

BACKGROUND: Enterovirus-D68 (EV-D68) has appeared biennially in the United States following the 2014 outbreak. It has gained epidemiologic and clinical relevance and was identified as an important pathogen associated with severe respiratory and central nervous system diseases. We aim to describe the clinical and molecular characteristics of the post-pandemic 2022 Enterovirus-D68 outbreak in children evaluated in a tertiary pediatric hospital in Columbus, Ohio. METHODS: EV-D68 RT-PCR was performed on nasopharyngeal specimens collected during Jun-Nov 2022 from children (<18 years), identified by 1) physician-order or 2) random selection of 10-15 specimens weekly that were Rhinovirus/Enterovirus-positive by physician-ordered respiratory virus panel. Patients who tested positive for EV-D68 were identified and clinical data and outcomes were analyzed. Partial viral VP1 region was sequenced and characterized. RESULTS: Forty-four children positive for EV-D68 were identified, among which 88.6 % of patients presented with respiratory symptoms and 61.4 % required PICU admission. Two patients presented with AFM that was attributed to EV-D68. EV-D68 sequences from 2022 clustered within the B3 subclade. CONCLUSIONS: A significant proportion of children identified with EV-D68 during the 2022 outbreak had respiratory compromise requiring PICU admission. As the virus continues evolving, it is important to monitor the activity of EV-D68, characterizing these strains clinically and genetically, which will help to understand the viral pathogenicity and virulence.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Niño , Humanos , Estados Unidos/epidemiología , Ohio/epidemiología , Niño Hospitalizado , Enterovirus Humano D/genética , Infecciones del Sistema Respiratorio/epidemiología , Brotes de Enfermedades
8.
J Clin Virol ; 169: 105617, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977075

RESUMEN

INTRODUCTION: Public health measures aimed at controlling transmission of SARS-CoV-2, otherwise known as "lockdown" measures, had profound effects on circulation of non-SARS viruses, many of which decreased to very low levels.  The interrupted transmission of these viruses may have lasting effects. Some of the influenza clades seem to have disappeared during this period, a phenomenon which is described as a "funnel effect". It is currently unknown if the lockdown measures had any effect on the diversity of circulating viruses, other than influenza. Enteroviruses are especially interesting in this context, as the clinical presentation of an infection with a particular enterovirus-type may be clade-dependent. METHODS AND MATERIALS: Enteroviruses were detected in clinical materials using a 5'UTR-based detection PCR, and partial VP-1 sequences were obtained, using methods described before. All samples with EV detections from a large part of the Netherlands were included in the study. The samples originated from general practitioners, general hospitals, university hospitals and public health offices. RESULTS: Five EV-genotypes circulated in significant numbers before and after the lockdown, EV-D68, E-11, CV-A6, CV-B5 and CV-A2. All five genotypes showed decreased genetic diversity after the lockdown, and four indicate a significant number of sequences clustering together with a very high sequence homology. Moreover, children with E-11 and CV-B5 detections were significantly older after the lockdown than before. CONCLUSIONS: The reduced enterovirus transmission in the Netherlands during the pandemic, seems to have led to a decrease in genetic diversity in the five most commonly detected enterovirus serotypes.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Gripe Humana , Niño , Humanos , Enterovirus/genética , Enterovirus Humano D/genética , Serogrupo , Filogenia
9.
Elife ; 122023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37850626

RESUMEN

Enterovirus D68 (EV-D68) is a re-emerging enterovirus that causes acute respiratory illness in infants and has recently been linked to Acute Flaccid Myelitis. Here, we show that the histone deacetylase, SIRT-1, is essential for autophagy and EV-D68 infection. Knockdown of SIRT-1 inhibits autophagy and reduces EV-D68 extracellular titers. The proviral activity of SIRT-1 does not require its deacetylase activity or functional autophagy. SIRT-1's proviral activity is, we demonstrate, mediated through the repression of endoplasmic reticulum stress (ER stress). Inducing ER stress through thapsigargin treatment or SERCA2A knockdown in SIRT-1 knockdown cells had no additional effect on EV-D68 extracellular titers. Knockdown of SIRT-1 also decreases poliovirus and SARS-CoV-2 titers but not coxsackievirus B3. In non-lytic conditions, EV-D68 is primarily released in an enveloped form, and SIRT-1 is required for this process. Our data show that SIRT-1, through its translocation to the cytosol, is critical to promote the release of enveloped EV-D68 viral particles.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Sirtuina 1 , Activación Viral , Humanos , COVID-19 , Enterovirus/genética , Enterovirus/fisiología , Enterovirus Humano D/genética , Enterovirus Humano D/fisiología , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/fisiopatología , Enfermedades Neuromusculares , Provirus , SARS-CoV-2 , Envoltura Viral/metabolismo , Envoltura Viral/fisiología , Activación Viral/genética , Activación Viral/fisiología , Sirtuina 1/genética , Sirtuina 1/fisiología
10.
Arch Virol ; 168(11): 268, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37804367

RESUMEN

Enterovirus D68 (EV-D68) is a respiratory virus that primarily affects children and has been associated with sporadic outbreaks of respiratory illness worldwide. In the present study, temporal spreading and molecular evolution of EV-D68 clades (A1, A2, B, B1, B2, B3, and C) were evaluated. Bayesian coalescent analysis was performed to study viral evolution. Data from 976 whole-genome sequences (WGSs) collected between 1977 and 2022 were evaluated. For A1, the most recent common ancestor was dated to 2005-04-17 in the USA; for A2 it was 2003-12-23 in China; for B, it was 2003-07-06 in China; for B1, it was 2010-03-21 in Vietnam; for B2, it was 2006-11-25 in Vietnam; for B3, it was 2011-01-15 in China; and for C, it was 2000-06-27 in the USA. The molecular origin of EV-D68 was in Canada in 1995, and later it was disseminated in France in 1997, the USA in 1999, Asia in 2008, the Netherlands in 2009, New Zealand in 2010, Mexico in 2014, Kenya in 2015, Sweden in 2016, Switzerland in 2018, Spain in 2018, Belgium in 2018, Australia in 2018, and Denmark in 2019. In 2022, this virus circulated in the USA. In conclusion, EV-D68 originated in Canada in the 1990s and spread to Europe, Asia, Oceania, Latin America, and Africa.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Infecciones del Sistema Respiratorio , Niño , Humanos , Enterovirus Humano D/genética , Teorema de Bayes , Infecciones por Enterovirus/epidemiología , Evolución Molecular , Brotes de Enfermedades , Filogenia , Kenia
11.
Emerg Infect Dis ; 29(11): 2315-2324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877582

RESUMEN

Enterovirus D68 (EV-D68) causes cyclical outbreaks of respiratory disease and acute flaccid myelitis. EV-D68 is primarily transmitted through the respiratory route, but the duration of shedding in the respiratory tract is unknown. We prospectively enrolled 9 hospitalized children with EV-D68 respiratory infection and 16 household contacts to determine EV-D68 RNA shedding dynamics in the upper respiratory tract through serial midturbinate specimen collections and daily symptom diaries. Five (31.3%) household contacts, including 3 adults, were EV-D68-positive. The median duration of EV-D68 RNA shedding in the upper respiratory tract was 12 (range 7-15) days from symptom onset. The most common symptoms were nasal congestion (100%), cough (92.9%), difficulty breathing (78.6%), and wheezing (57.1%). The median illness duration was 20 (range 11-24) days. Understanding the duration of RNA shedding can inform the expected rate and timing of EV-D68 detection in associated acute flaccid myelitis cases and help guide public health measures.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Niño , Adulto , Humanos , Enterovirus Humano D/genética , Colorado/epidemiología , Sistema Respiratorio , Infecciones por Enterovirus/epidemiología , Brotes de Enfermedades , ARN , Infecciones del Sistema Respiratorio/epidemiología
12.
Emerg Infect Dis ; 29(11): 2362-2365, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877593

RESUMEN

In this retrospective study, we measured enterovirus D68 (EV-D68) genomic RNA in wastewater solids longitudinally at 2 California, USA, wastewater treatment plants twice per week for 26 months. EV-D68 RNA was undetectable except when concentrations increased from mid-July to mid-December 2022, which coincided with a peak in confirmed EV-D68 cases.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Mielitis , Humanos , Enterovirus Humano D/genética , Estudios Retrospectivos , Aguas Residuales , Infecciones por Enterovirus/epidemiología , Mielitis/epidemiología , Brotes de Enfermedades , California/epidemiología , ARN , Enterovirus/genética
13.
mBio ; 14(5): e0214123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819109

RESUMEN

IMPORTANCE: The respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles. Enterovirus D68 requires acidic vesicles for an earlier step, assembly, and maintenance of viral particles themselves. These data have strong implications for the use of acidification blocking treatments to combat enterovirus diseases.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Mielitis , Enfermedades Neuromusculares , Poliovirus , Humanos , Niño , Enterovirus Humano D/genética , Cápside
14.
Infect Genet Evol ; 115: 105512, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827347

RESUMEN

Enterovirus D68 (EV-D68), a member of Enterovirus genus of the Picornaviridae family, mainly causes respiratory system-related diseases as well as neurological complications in some patients. At present, there is no effective vaccine or treatment for the virus. The aim of this research was to systematically analyse the molecular epidemiology, recombination and changes in the epitope of EV-D68 in China from 2008 to 2022. Through phylogenetic analysis based on VP1 sequences, it was found that there was limited information about EV-D68 infection before 2011 and that EV-D68 infection was dominated by the A2 gene subtype from 2011 to 2013 and the B3 genotype from 2014 to 2018, during which A2 and B3 were coprevalent and alternately prevalent. We also constructed a phylogenetic tree using the EV-D68 full-length genome sequences, and the genotype of each sequence was consistent with that of the VP1 sequence evolutionary tree. Recombination analysis showed that MH341715 underwent intertypic recombination with the A2 genotype MH341729 at the 5' untranslated region (5'UTR) and that P1-P3 underwent recombination with the B3 genotype MH341712. The capsid protein VP1 is one of the most important structural proteins. In VP1, the BC-loop (89-105 amino acids) and DE-loop (140-152 amino acids) are the most variable domains on the surface of the virus and are associated with epitopes. In this study, it was found that the dominant amino acid composition of the BC-loop and DE-loop continued to change with the epidemic of the virus; the amino acid composition also differed in different regions of the same genotypes. The ongoing genomic and molecular epidemiology of EV-D68 remains important for predicting emergence of new viruses and preventing major outbreaks of respiratory diseases.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Infecciones del Sistema Respiratorio , Humanos , Enterovirus Humano D/genética , Epidemiología Molecular , Filogenia , China/epidemiología , Enterovirus/genética , Infecciones por Enterovirus/epidemiología , Recombinación Genética , Aminoácidos/genética
15.
Intervirology ; 66(1): 111-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37793363

RESUMEN

INTRODUCTION: Human enterovirus D68 (EV-D68), which belongs to enteroviruses of the small RNA family, is a type of enterovirus that can cause acute respiratory tract infection and central nervous system diseases. This study systematically analysed and summarized EV-D68 antibody studies in databases and identified the seropositivity rates of different regions, ages, and sexes. METHODS: Meta-analysis was performed using STATA 16.0 software. I2 and Q tests were used to analyse the heterogeneity of the included studies. Meta-regression analysis was performed for different groups, and Egger's linear regression analysis was used to evaluate publication bias. RESULTS: The results of multiple studies indicated that the serological prevalence range of EV-D68 antibody was 17.78-96.69%. The results of the meta-analysis showed that the seropositivity rate of EV-D68 antibody was 76% (95% confidence interval [CI]: 67-84%), among which that of the Chinese population was 74% (95% CI: 61-86%) and that of other countries was 79% (95% CI: 65-91%). At the same time, a subgroup analysis was conducted. The seroprevalence of EV-D68 antibody was related to age but not sex or region. CONCLUSION: The seropositivity rate was lower in the below 5-year age group; however, it gradually increased with age. The results of this study showed that EV-D68 infection was widespread in the population, and the current clinical infection situation could not reflect the actual epidemic situation of the virus, among which children under 5 years old were vulnerable to infection, which should be given greater attention for epidemic prevention and control.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Infecciones del Sistema Respiratorio , Niño , Humanos , Preescolar , Enterovirus Humano D/genética , Estudios Seroepidemiológicos , Infecciones por Enterovirus/epidemiología , Anticuerpos Antivirales , Infecciones del Sistema Respiratorio/epidemiología
16.
Virol Sin ; 38(5): 755-766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657555

RESUMEN

Enterovirus D68 (EV-D68) can cause respiratory diseases and acute flaccid paralysis, posing a great threat to public health. Interferons are cytokines secreted by host cells that have broad-spectrum antiviral effects, inducing the expression of hundreds of interferon-stimulated genes (ISGs). EV-D68 activates ISG expression early in infection, but at a later stage, the virus suppresses ISG expression, a strategy evolved by EV-D68 to antagonize interferons. Here, we explore a host protein, suppressor of cytokine signaling 3 (SOCS3), is upregulated during EV-D68 infection and antagonizes the antiviral effects of type I interferon. We subsequently demonstrate that the structural protein of EV-D68 upregulated the expression of RFX7, a transcriptional regulator of SOCS3, leading to the upregulation of SOCS3 expression. Further exploration revealed that SOCS3 plays its role by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). The expression of SOCS3 inhibited the expression of ISG, thereby inhibiting the antiviral effect of type I interferon and promoting EV-D68 transcription, protein production, and viral titer. Notably, a truncated SOCS3, generated by deleting the kinase inhibitory region (KIR) domain, failed to promote replication and translation of EV-D68. Based on the above studies, we designed a short peptide named SOCS3 inhibitor, which can specifically bind and inhibit the KIR structural domain of SOCS3, significantly reducing the RNA and protein levels of EV-D68. In summary, our results demonstrated a novel mechanism by which EV-D68 inhibits ISG transcription and antagonizes the antiviral responses of host type I interferon.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Interferón Tipo I , Humanos , Antivirales/farmacología , Enterovirus Humano D/genética , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Quinasas Janus/metabolismo
17.
Arch Virol ; 168(8): 206, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453955

RESUMEN

Acute flaccid paralysis (AFP) associated with enterovirus D68 (EV-D68) infection has attracted much attention since an outbreak in the USA in 2014. Notably, EV-D68 was detected in a child with AFP for the first time in China in 2018. In a multicentre study from May 2017 to December 2019, we monitored EV-D68 infections in hospitalized children with acute lower respiratory tract infection (ALRTI) in China. Out of 3,071 samples collected from patients with ALRTI, ten were positive for EV-D68. All patients presented with mild diseases with no neurological symptoms or signs. Phylogenetic analysis based on the VP1 gene showed that all EV-D68 sequences obtained in this study belonged to subclade B3 and were close to sequences of EV-D68 strains obtained from patients with AFP in the USA. Four EV-D68 strains were isolated, and their complete genome sequences were determined. These sequences did not show any evidence of recombination events. To assess their neurotropism, the isolates were used to infect the "neuronal-like" cell line SH-SY5Y, and resulted in a cytopathic effect. We further analysed the structure and sites that may be associated with neurovirulence, including the stem-loop structure in the untranslated region (3'UTR) and identified amino acid substitutions (M291T, V341A, T860N, D927N, S1108G, and R2005K) in the coding region and specific nucleotides (127T, 262C, and 339T) in the 5' UTR. In conclusion, EV-D68 infection was detected in a small number of children with ALRTI in China from 2017 to 2019. Disease symptoms in these children were relatively mild with no neurological complications, and all EV-D68 sequences belonged to subclade B3.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Neuroblastoma , Infecciones del Sistema Respiratorio , Humanos , Niño , Enterovirus Humano D/genética , Filogenia , alfa-Fetoproteínas/genética , Neuroblastoma/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Brotes de Enfermedades , Estudios Multicéntricos como Asunto
18.
BMC Infect Dis ; 23(1): 481, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464326

RESUMEN

BACKGROUND: Enterovirus D68 (EV-D68), belonging to Enterovirus D, is a unique human enterovirus mainly associated with common respiratory diseases. However, EV-D68 can cause severe respiratory diseases, and EV-D68 endemic is epidemiologically linked to current global epidemic of acute flaccid myelitis. METHODS: In this study, we measured neutralizing antibody titers against six clinical EV-D68 isolates in nine intravenous immune globulin (IVIG) products commercially available in Japan to assess their potential as therapeutic options for severe EV-D68 infection. RESULTS: Seven IVIG products manufactured from Japanese donors contained high neutralizing antibody titers (IC50 = 0.22-85.01 µg/mL) against all six EV-D68 strains. Apparent differences in neutralizing titers among the six EV-D68 strains were observed for all IVIG products derived from Japanese and non-Japanese blood donors. CONCLUSIONS: High levels of EV-D68-neutralizing antibodies in IVIG products manufactured from Japanese donors suggest that anti-EV-D68 antibodies are maintained in the Japanese donor population similarly as found in foreign blood donors. Apparent differences in neutralizing antibody titers against the six EV-D68 strains suggest distinct antigenicity among the strains used in this study regardless of the genetic similarity of EV-D68.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Humanos , Anticuerpos Neutralizantes , Enterovirus Humano D/genética , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/epidemiología , Inmunoglobulinas Intravenosas/farmacología , Japón
19.
Diagn Microbiol Infect Dis ; 106(4): 115976, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37267740

RESUMEN

To ensure proper specimen handling for detecting pathogens, like Enterovirus D68 (EV-D68), from home- and self-collection, alternative techniques are needed to ensure safe transport and reliable testing. PrimeStore® Molecular Transport Medium (MTM) may be an option since it does not require cold storage and inactivates virus while preserving RNA for detection. The purpose of this validation study was to demonstrate the ability to detect EV-D68 via rRT-PCR in MTM. Using a quantified EV-D68 positive control standard, MTM limit of detection for EV-D68 RNA is 104 cp/mL and RNA remains stable up to 30 days unfrozen. Positive and negative residual respiratory specimens from the 2018 EV-D68 outbreak were used for clinical testing. There was an 80% positive and 100% negative agreement with samples in MTM compared to reference. This study demonstrates the feasibility of EV-D68 detection from respiratory specimens collected and stored in PrimeStore® MTM, with implications for home- and self-collection.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Humanos , Enterovirus Humano D/genética , Infecciones por Enterovirus/diagnóstico , Reacción en Cadena de la Polimerasa , Brotes de Enfermedades
20.
Emerg Infect Dis ; 29(6): 1258-1261, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209691

RESUMEN

We observed an intense enterovirus D68 outbreak in children in southwest Finland in August-September 2022. We confirmed enterovirus D68 infection in 56 children hospitalized for respiratory illnesses and in 1 child with encephalitis but were not able to test all suspected patients. Continuing surveillance for enterovirus D68 is needed.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Infecciones del Sistema Respiratorio , Humanos , Niño , Lactante , Enterovirus Humano D/genética , Finlandia/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones por Enterovirus/epidemiología , Brotes de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...